2015年11月19日
地球観測連携拠点主催ワークショップ

衛星地球観測の現状と課題

中島 映至
JAXA地球観測研究センター（EORC）
日本学術会議元会員（現連携会員）
地球惑星科学連合大気水圏科学プレジデント
増大する衛星地球観測データと予報精度の向上

Evolution of forecast performance
ECMWF, Japan, UK and USA
RMS error (hPa) of forecasts of mean sea level pressure

同化に利用されたデータ量

- 観測技術とモデリング技術の向上
- 第3回世界気候会議: 第3回世界気候会議: 全球気候サービス枠組み (GFCS)
EOS in '80
TERRA '99: MODIS, ASTER, ...
AQUA '02: MODIS, AMSR-E

ADEOS '96: OCTS, NSCAT
ADEOS-II '02: GLI, SeaWinds

「みどり２号」先代に続き回復不能

「日の丸衛星」窮地

1400億円消えた

流星星2つ

NASA

TERRA

"不審と懸念"

ヒートシングル選挙や水の

ADEOS, ADEOS-IIが10か月の運用後に停止 (2003年10月)
NASAのTERRA衛星は16年間の運用を続けていている（長寿命化の重要性）
次世代地球観測衛星群

Cloudsat, CALIPSO, EarthCARE
TRMM, GPM -2018

TERRA&AQUA
GCOM-W, GCOM-C
2017-

GOSAT, OCO2
GOSAT-2
2015-, 3rd generation
Himawari-8&9
GOES-R

GOSAT2/FTS-SWIR
Greenhouse gas monitoring

FTS-TIR

CAI2

TRMM, GPM, EarthCARE
Aerosol forcing

NASA/LARC

Radar Echo

Doppler velocity

AHI specs, JMA/HIMAWARI-8/9
16 bands (1km, 2km)
Full disk scan every 10min
Rapid scan every 2.5 min

Weather, environ. monitoring

GCOM-W/AMSR2

GCOM-C/SGLI

imager
back/forward view with polarization

250m, 11ch
500m, 2 ch
1km, 4 ch

HIMAWARI7
Quick scan

20-7-2017-2018

NASA/LARC

Aerosol forcing

Radar & lidar

Dynamics, radiation & particles

Greenhouse gas monitoring

XCO₂, XCH₄

XCO₂, XCH₄

NASA/LARC
Grasp the flooded area, and Assist decision making for the dispatch request of drain pump vehicles

- ALOS-2による氾濫域の検知

9/10/2015 11:42 (Just before the break down)
9/11/2015 22:56 (1.5 day after the break down)
9/13/2015 23:37 (3 day after the break down)

氾濫域の拡大
氾濫域は縮小、しかしそ南下
GOSATデータを利用したメタン排出量の評価

GOSAT “Ibuki”
(Launched at Jan. 2009)

FTS
(Fourier Transform Spectrometer)

CAI
(Cloud and Aerosol Imager)

North America

GOSATデータ解析によると、既存のメタン排出量インベントリ（US EPA, EDGARv4.2）は1.5倍から1.7倍、過少評価である。（Turner@Harvard University, ACP'15）

MOEJ, NIEA, JAXA
2009年以降、増加率が減少
削減施策への衛星観測利用の可能性
Image (A) was compiled by combining image (B) acquired by the PALSAR-2 on June 21, 2014, and the other (C) shot by PALSAR (aboard the DAICHI) in 2009 and adding colors. (Sky-blue indicates non-forest areas, gray represents forests, red is deforested areas over five years.) The total deforested space reaches 25.0 km² within the area shown in this image.

Observations by the PALSAR-2, which are suitable for measuring forestry with L-band radio waves, will enable global-scale forest monitoring. Therefore, the DAICHI-2 is expected to significantly contribute to the estimation of biomass of forests, which is deeply related to climate change and forestry control.
火山活動による箱根域の地殻変動

ALOS-2

10/9/2014 – 5/7/2015
ΔH : 6cm (max)

5/7/2015 – 5/21/2015
ΔH : 15cm (max)、20cm (total)

ΔH : 10cm (max)、30cm (total)

ΔH : 3cm (max)、33cm (total)

6/18/2015 – 7/2/2015
ΔH : 7cm (max)、40cm (total)

In-SAR data were used for setting and opening the no entry area by HAKONE town government

Images provided by GSI
Time series interferometry quantitatively visualizes deformation that reveals subsidence area over the monitored infrastructures. The results shows good agreement between interferometry and ground measurement data. Verified to be 11.5mm (RMSE).

Input data
Sensor: ALOS/PALSAR
Date: 10/2006 ~ 10/2010
Orbit: Descending
polarimetry: HH
Scenes: 13

Time-series subsidence is shown;
Orange: Measured on the ground with GPS and leveling
Brack: Measured with ALOS
対流・雲システムの高頻度観測（気象庁）

- Himawari-8 AHI
- 2.5分毎でのメソスケール雲システム観測
ひまわり8号・9号データの提供概要

気象庁

気象衛星センター

放射計データファイル（永久保存）※原則非公開
リサンプリング（位置合わせ、階調校正、格子変換）

ひまわり標準データ

1日約430GB（非圧縮）
年間約160TB（非圧縮）

軽量化（低解像度化）

netCDF
（領域観測のみ）
1日約200GB（非圧縮）

HRITデータ
現行MTSATと同等のデータ量
1日約11GB（非圧縮）

研究コミュニティでの利用（調整中）

NICT
（サイエンスクラウド）

千葉大学

東京大学（DIAS）

JAXA

準リアルタイム
ペストエフォート

データ保存サーバー

データ保存サーバー

データ保存サーバー

準リアルタイム
（過去データを含む）

準リアルタイム
（過去データを含む）

研究者等

先進国の気象機関等を想定

アメリカ、ヨーロッパ等

NICT

リアルタイム配信

専用サーバー

専用回線等（実費負担）

民間気象事業者等
（即時利用を必須とするユーザー）

気象庁静止衛星データ利用技術懇談会資料
EORC分野横断型利用研究

<table>
<thead>
<tr>
<th>分野</th>
<th>衛星</th>
<th>ALOS 2</th>
<th>GPM</th>
<th>TRMM</th>
<th>Earth</th>
<th>CARE</th>
<th>GCOM</th>
<th>GOSAT</th>
<th>Himawari-8</th>
<th>連携機関</th>
</tr>
</thead>
<tbody>
<tr>
<td>防災利用</td>
<td></td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>極地研・気象研・JAMSTEC</td>
</tr>
<tr>
<td>海洋監視</td>
<td>①船舶監視</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>②環境監視</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td></td>
<td>東大・土木研</td>
</tr>
<tr>
<td>水循環・水資源管理</td>
<td></td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td></td>
<td>気象研・環境研・九州大・気象庁</td>
</tr>
<tr>
<td>大気環境監視</td>
<td></td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>インフラ変位モニタ</td>
<td></td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>国建協等</td>
</tr>
<tr>
<td>気候モデル・放射コード</td>
<td></td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td></td>
<td>東大</td>
</tr>
<tr>
<td>生態系</td>
<td></td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td></td>
<td>筑波大・NIES・北大・JAMSTEC</td>
</tr>
<tr>
<td>農業</td>
<td></td>
<td>○</td>
<td>○</td>
<td></td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td></td>
<td>農環研、東大</td>
</tr>
<tr>
<td>公衆衛生</td>
<td></td>
<td>○</td>
<td>○</td>
<td></td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td></td>
<td>国際医療セ、長崎大、東大</td>
</tr>
</tbody>
</table>
GSMaP: 現業とビジネス利用に役立つプラットフォーム

マイクロ波イメージャ/サウンダ

TRMM TMI
GPM Core GMI

GCOM-W
AMSR2

DMSP
SSM/I, SSMIS

NOAA/MetOp
AMSU (sounder)

GSMaPマイクロ波放射計アルゴリズム

個々のマイクロ波放射計からの降雨

統合された降雨場

降雨レーダ

TRMM PR

GPM Core DPR

降雨データベース

2014

赤外イメージャー

静止衛星

Microwave-IR
統合アルゴリズム

全球降雨マップ
+雨量計: 校正化降雨
(0.1×0.1 deg. box, 毎時)

気象予測へのJAXAの貢献
“Himawari-8”域を組み込んだ“GSMaP_NOW”の開始！
全球衛星降雨場マップ (GSMaP)

GSMaP (Global) observed Hurricane Patricia and Olaf, and Typhoon Champi: 20-24 Oct. 2015, hourly animation

・変化の大きな降雨現象の監視には高頻度観測が必要
・GPMコア衛星・極軌道放射イメージ・サウンダ・静止衛星赤外放射計の統合利用が必要

JAXA Global Rainfall Watch (4-hr delay) : http://sharaku.eorc.jaxa.jp/GSMaP
JAXA Realtime Rainfall Watch (Himawari-area): http://sharaku.eorc.jaxa.jp/GSMaP_NOW
Aerosol products are retrieved by 2-ch method (Higurashi and Nakajima, 1999)
科学と現業への波及効果

気候・環境変化研究

地球観測

モデリング

適用策

軽減策

アジア域の適応策

健康被害

温室効果ガス削減

太陽エネルギー利用

社会基盤メンテナンス

防災

最前線科学

微小エアロゾル（緑）・粗大エアロゾル（赤）・雲（白）

Earth Simulator @JAMSTEC; High Performance Computing Infra. (HPCI): K-Computer (10pF) @ RIKEN
地球観測枠組み

■ 地球観測に関する政府間会合 (GEO): WMO, UNESCO, UNEP, ICSU, CEOS, FAO, ...

 ● 10年間でGlobal Earth Observation System of Systems (GEOSS) を構築、策定プラン

 ● 文部科学省 科学技術・学術審議会 地球観測推進部会: 統合的な推進組織を恒常的に整備、地球観測の推進戦略の改定

 ● 環境省・気象庁 地球観測連携拠点 地球温暖化観測推進事務局

■ 世界気象機関（WMO）；各国気象機関: Integrated Global Observing Systems (WIGOS)

 ● 基本気候変数（ECV）

■ 地球観測衛星委員会(CEOS): 各国宇宙機関, GEO/GEOSSの宇宙部分の担当

■ Global Climate Observing System (GCOS): WMO- IOC-UNEP-ICSU

■ WMO World Weather Watch Global Observing System (GOS) and Global Atmosphere Watch (GAW)
<table>
<thead>
<tr>
<th>序号</th>
<th>卫星名称</th>
<th>载荷</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>MSG3/METEOSAT-10 (2013-)</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>METOP-B (2013)</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>METOP-C: AMSU-A, ASCAT, AVHRR/3, GOME-2, GRAS, IASI, MHS</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>METOP-SG-A1 : 3MI, IASI-NG, UVNS (Sentinel 5), MetImage, MWS, RO</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>METOP-SG-A2</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>METOP-SG-B1: ICI, SCA, MWI, RO</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>METOP-SG-A3</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>METOP-SG-B2</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Swarm-A, B, C/Earth Explorer 5A, B, C</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>ADM/Earth Explorer 4</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>EarthCARE/Earth Explorer 6</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Biomass/Earth Explorer 7</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Earth Explorer 8: FLEX or CarbonSat</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>JASON2 (2009-)</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>JASON3</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Sentinel-1A (2014-), SAR-C</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Sentinel-1B</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Sentinel-2A, MSI</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Sentinel-2B</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Sentinel-3A MWR, OLCI, LSTR, SRAL</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Sentinel-3B</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Sentinel-5Pre, TROPOMI</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>MTG-I-1 Imagery</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>MTG-S1: IRS, UVN (Sentinel-4)</td>
<td>MTG-I-3 Imagery</td>
</tr>
<tr>
<td>40</td>
<td>MTG-I-2 Imagery</td>
<td>MTG-I-4 Imagery</td>
</tr>
</tbody>
</table>

注：
- MSG3/METEOSAT-10 (2013-)
- METOP-B (2013)
- METOP-C: AMSU-A, ASCAT, AVHRR/3, GOME-2, GRAS, IASI, MHS
- METOP-SG-A1 : 3MI, IASI-NG, UVNS (Sentinel 5), MetImage, MWS, RO
- METOP-SG-B1: ICI, SCA, MWI, RO
- Swarm-A, B, C/Earth Explorer 5A, B, C
- ADM/Earth Explorer 4
- EarthCARE/Earth Explorer 6
- Biomass/Earth Explorer 7
- Earth Explorer 8: FLEX or CarbonSat
- JASON2 (2009-)
- JASON3
- Sentinel-1A (2014-), SAR-C
- Sentinel-1B
- Sentinel-2A, MSI
- Sentinel-2B
- Sentinel-3A MWR, OLCI, LSTR, SRAL
- Sentinel-3B
- Sentinel-5Pre, TROPOMI

英文版本

<table>
<thead>
<tr>
<th>序号</th>
<th>卫星名称</th>
<th>载荷</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>MSG3/METEOSAT-10 (2013-)</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>METOP-B (2013)</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>METOP-C: AMSU-A, ASCAT, AVHRR/3, GOME-2, GRAS, IASI, MHS</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>METOP-SG-A1 : 3MI, IASI-NG, UVNS (Sentinel 5), MetImage, MWS, RO</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>METOP-SG-A2</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>METOP-SG-B1: ICI, SCA, MWI, RO</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>METOP-SG-A3</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>METOP-SG-B2</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Swarm-A, B, C/Earth Explorer 5A, B, C</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>ADM/Earth Explorer 4</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>EarthCARE/Earth Explorer 6</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Biomass/Earth Explorer 7</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Earth Explorer 8: FLEX or CarbonSat</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>JASON2 (2009-)</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>JASON3</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Sentinel-1A (2014-), SAR-C</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Sentinel-1B</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Sentinel-2A, MSI</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Sentinel-2B</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Sentinel-3A MWR, OLCI, LSTR, SRAL</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Sentinel-3B</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Sentinel-5Pre, TROPOMI</td>
<td></td>
</tr>
</tbody>
</table>

英文注释

- MSG3/METEOSAT-10 (2013-)
- METOP-B (2013)
- METOP-C: AMSU-A, ASCAT, AVHRR/3, GOME-2, GRAS, IASI, MHS
- METOP-SG-A1 : 3MI, IASI-NG, UVNS (Sentinel 5), MetImage, MWS, RO
- METOP-SG-B1: ICI, SCA, MWI, RO
- Swarm-A, B, C/Earth Explorer 5A, B, C
- ADM/Earth Explorer 4
- EarthCARE/Earth Explorer 6
- Biomass/Earth Explorer 7
- Earth Explorer 8: FLEX or CarbonSat
- JASON2 (2009-)
- JASON3
- Sentinel-1A (2014-), SAR-C
- Sentinel-1B
- Sentinel-2A, MSI
- Sentinel-2B
- Sentinel-3A MWR, OLCI, LSTR, SRAL
- Sentinel-3B
- Sentinel-5Pre, TROPOMI
米国における地球観測衛星計画

NOAA

GOES-R

GOES-S

GOES-T

GOES-U

DoD/EUMETSAT

DMSP-19

DMSP-20 (under review)

METOP-SG-B1 ICI,SCA,MWI,RO

METOP-SG-B2

METOP-SG-B3

Suomi NPP

JPSS-1 VIIRS, ATMS, CrIS

JPSS-2 VIIRS, ATMS, CrIS, CERES, OMPS

JPSS-3

JPSS-4

Suomi NPP:ATMS,VIIRS,OMPS,CERES

JPSS-1 VIIRS, ATMS, CrIS

JPSS-2 VIIRS, ATMS, CrIS, CERES, OMPS

JPSS-3

JPSS-4

JPSS-5

GPM-Brazil

ICEsat-2

OCO2

Landsat-8

GPM-Core Observatory

SMAP

GEO-CAPE

CLARREO-1A, 2A: IR spectrometer

CLARREO-1B, 2B: SW spectrometer

Pre-ACE: APS-NG,OES

ACE: liar,APS-NG,CPR,OES

ASCEND: CO sensor,CO2 lidar

HyspIRI

3D Winds: lidar

GEO-CAPE

NASA

SWOT: Altimeter,KaRIN,MW radiometer (CNES)

Sentinel-6A/Jason CS1 (NOAA, Eumetsat, NASA, Cnes); 6B/CS2

TEMPO
中国・韓国における地球観測衛星計画

China
- FY-2D (2006-)
- FY-2E (2008-)
- FY-2F (2012-)
- FY-2G (2014-)
- FY-2H
- FY-3A (2008-)
- FY-3B (2010-)
- FY-3C (2013-)
- FY-3D
- FY-3E
- FY-3F
- FY-3G
- FY-3RM-1
- FY-3RM-2
- TanSat

Korea
- COMS-1 (2010-): GOCI, MI
- KOMPSAT-3: AEISS
- KOMPSAT-3: IIP, AEISS-A
- KOMPSAT-5 (2013-): SAR

China
- FY-4A
- FY-4B
- FY-4C
- FY-4D
- FY-4E
- FY-4F
- FY-4G
- FY-4MW

Korea
- GEO-KOMPSAT-2A: AMI
- GEO-KOMPSAT-2B: GEMS, GOCI-II
全球環境変化研究: 社会ニーズの増大

- IPCC評価報告書が積み上がっていても温暖化は解決しない・・・
- Rio+20（2012）「国連持続可能な開発会議」
- 人類紀（Anthropocene, P. Crutzen）; 科学と社会の新たな契約、実施可能科学、超学際科学ステークホルダーと政策決定者を含む新しい地球環境変動枠組み
- 気候サービスのための全球枠組み（GFGS）設置

4つの全球環境変化（GEC）プログラム

1980
地球圈-生物圈国際協同研究計画

1986
国際生物多様性科学国際共同研究計画

1991
WCRP

1996
GLOBAL IGBP CHANGE

2001
Earth System Science Partnership

and their partners

Anthropocene Actionable Science

新組織
(IGBP,DIVER-SITAS,IHDP)

改革

WCRP

政策立案者とステークホルダーを含む新しい枠組み: Future Earth
ISCU フューチャー・アース枠組みの戦略

■ 2013: IGBP,DIVERSITAS,IHDPの改組
■ UN SDG:への貢献
■ cf. IPCC: policy-relevant & yet policy-neutral, never policy-prescriptive

Future Earth Initial Design Document
Future-Earth-Design-Report
Management of Disaster & Environmental Risks

- Preventing New Risk
- Reducing Existing Risk
- Building Resilience

Human-induced Issues
- Population: 人口
- Economy: 経済
- Governance: 統治
- Pollution: 汚染
- Land Use: 土地利用
- Urbanization: 都市化

Benefits → Damage
- Water: 水
- Food: 食料
- Health: 健康
- Energy: エネルギー
- Biodiversity: 生物多様性
- Climate Change: 気候変動
- Disaster: 災害

Sustainable Development
- Management of Disaster & Environmental Risks
- Human Security
- Development

Inherent Risk to Development
- Human-Induced Issues

Courtesy: Prof. Toshio Koike
Sendai Framework for Disaster Risk Reduction 2015-2030
世界の衛星地球観測に関わる状況

- 地球環境問題解決に貢献するための地球観測衛星計画
- 世界気象機関（WMO）では「2020年-2040年」期計画が盛ん
 - 全球気候サービス枠組み（GFCS）の形成
- 欧州
 - 「コペルニクス」プログラムによるESA-EUMETSAT連携
 - コペルニクス/気候変動イニシアチブ（CCI）による様々な衛星データ解析と気候サービスへのデータ提供（無料化）
- 米国
 - NASA Decadal Survey Missions
 - NOAA GOES-NEXT (R, S, T, U)
 - NOAA Suomi-NPP, JPSS-1 (2017), -2 (2020)（極軌道衛星システム）
 - NOAA-NASA-Europe連携
- 中国
 - 将来計画助言委員会で熱心な検討（中島も委員）
 - CMA FY3 E/F/G (2018-)
宇宙基本計画工程表
（平成27年度改訂）（素案）

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>陸域・海域観測</td>
<td></td>
</tr>
<tr>
<td>先進光学衛星</td>
<td></td>
</tr>
<tr>
<td>先進レーダ衛星</td>
<td></td>
</tr>
<tr>
<td>陸域観測技術衛星</td>
<td></td>
</tr>
<tr>
<td>先進光学衛星後継機①</td>
<td></td>
</tr>
<tr>
<td>先進光学衛星後継機②</td>
<td></td>
</tr>
<tr>
<td>●継続的に開発・運用等</td>
<td></td>
</tr>
<tr>
<td>気象観測</td>
<td></td>
</tr>
<tr>
<td>静止気象衛星</td>
<td></td>
</tr>
<tr>
<td>ひまわり6号（待機運用）</td>
<td></td>
</tr>
<tr>
<td>ひまわり7号（待機運用）</td>
<td></td>
</tr>
<tr>
<td>ひまわり8号（2014年度打ち上げ）</td>
<td></td>
</tr>
<tr>
<td>ひまわり9号（待機運用）</td>
<td></td>
</tr>
<tr>
<td>ひまわり9号（2014年度打ち上げ）</td>
<td></td>
</tr>
<tr>
<td>以後、待機運用</td>
<td></td>
</tr>
<tr>
<td>以後、ひまわり8号に替えて観測運用</td>
<td></td>
</tr>
<tr>
<td>静止気象衛星後継機 製造・打ち上げ・待機運用</td>
<td></td>
</tr>
<tr>
<td>以後、ひまわり9号に替えて観測運用</td>
<td></td>
</tr>
<tr>
<td>温室効果ガス観測</td>
<td></td>
</tr>
<tr>
<td>温室効果ガス観測技術衛星</td>
<td></td>
</tr>
<tr>
<td>温室効果ガス観測技術衛星2号機</td>
<td></td>
</tr>
<tr>
<td>温室効果ガス観測技術衛星3号機</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>その他のリモートセンシング及びセンサ等技術の高度化</td>
<td></td>
</tr>
<tr>
<td>水循環</td>
<td></td>
</tr>
<tr>
<td>水循環変動観測衛星（しづく2012年度打ち上げ）</td>
<td></td>
</tr>
<tr>
<td>気候変動観測衛星（GCOM-C）</td>
<td></td>
</tr>
<tr>
<td>雲・降水</td>
<td></td>
</tr>
<tr>
<td>全球降水観測計画／二周波降水レーダ（GPM／DPR 2013年度打ち上げ）</td>
<td></td>
</tr>
<tr>
<td>雲・ミクロプロセス</td>
<td></td>
</tr>
<tr>
<td>雲・ミクロプロセス放電ミッション/雲プロフライレーザ（Earth CARE／CPR）</td>
<td></td>
</tr>
<tr>
<td>超低高度衛星</td>
<td></td>
</tr>
<tr>
<td>超低高度衛星技術試験機（SLATS）</td>
<td></td>
</tr>
<tr>
<td>アスナロ1号（2014年度打ち上げ）</td>
<td></td>
</tr>
<tr>
<td>アスナロ2号</td>
<td></td>
</tr>
<tr>
<td>優先度等</td>
<td></td>
</tr>
<tr>
<td>ハイパースペクトルセンサー</td>
<td></td>
</tr>
</tbody>
</table>

NO PLAN!
第1章 宇宙基本計画の位置付けと新たな宇宙開発利用の推進体制
○今後10年程度を視野に置いた平成25年度からの5年計画。
○内閣府が宇宙政策の司令塔機能を担うとともに、JAXAは政府全体の宇宙開発利用を技術で支える中核的な実施機関として位置付けられた。

第2章 宇宙開発利用の推進に関する基本的な方針
《宇宙利用の拡大》 《自律性の確保》

《施策の強化の考え方》
宇宙利用の拡大と自律性の確保に向けた取組に必要な資源を確保し、宇宙科学に一定規模の資源を充てた上で、宇宙探査や有人宇宙活動等に資源を割り当てる。

《3つの重点課題》
「安全保障・防災」「産業振興」「宇宙科学等のフロンティア」の3つの課題に重点を置くとともに、科学技術力や産業基盤の維持、向上が重要。

《我が国の宇宙開発利用に関する6つの基本理念》
宇宙の平和的利用 国民生産の向上等 産業の振興 人類社会の発展 国際協力等の推進 環境への配慮

第3章 宇宙開発利用に関し政府が総合的に計画的に実施すべき施策
《宇宙利用拡大と自律性確保を実現する4つの社会インフラ》
A測位衛星 Bリモートセンシング衛星 C通信・放送衛星 D 卫星輸送システム

《将来の宇宙開発利用の可能性を追求する3つのプログラム》
E 宇宙科学・探査プログラム F 有人宇宙活動プログラム G 宇宙太陽光発電研究開発プログラム

＜準天頂衛星システムの整備＞

GPS GPS+準天頂

準天頂衛星システム

衛星数増加による測位精度向上

2018年度に4機体制での運用開始を目指し、準天頂
我が国の宇宙開発利用に関する政策の企画及び立案並びに総合調整等の宇宙政策の司令塔機能
宇宙開発利用の推進体制

宇宙開発戦略本部
（本部長：内閣総理大臣）

宇宙戦略室

内閣官房宇宙戦略本部事務局

宇宙政策の司令塔

宇宙政策委員会
（7名）
宇宙安全保障部会
宇宙民生利用部会
宇宙産業・科学技術基盤部会
宇宙法制小委員会、宇宙科学・探査小委員会
国立研究開発法人宇宙航空研究開発機構分科会

宇宙航空研究開発機構

各省
文部科学省
総務省
経済産業省

内閣府ホームページ
衛星地球観測: 高い科学的貢献

<table>
<thead>
<tr>
<th></th>
<th>#articles</th>
<th>Citation except for self-citation</th>
<th>h-index</th>
<th>Articles in 2014</th>
<th>Citations in 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRMM</td>
<td>2,224</td>
<td>27,974</td>
<td>85</td>
<td>232</td>
<td>262</td>
</tr>
<tr>
<td>AMSR</td>
<td>821</td>
<td>9,514</td>
<td>52</td>
<td>119</td>
<td>110</td>
</tr>
<tr>
<td>ALOS</td>
<td>787</td>
<td>5,033</td>
<td>34</td>
<td>169</td>
<td>174</td>
</tr>
<tr>
<td>GOSAT</td>
<td>191</td>
<td>1,262</td>
<td>25</td>
<td>42</td>
<td>50</td>
</tr>
<tr>
<td>GCOM</td>
<td>24</td>
<td>272</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>GPM</td>
<td>597</td>
<td>6,779</td>
<td>40</td>
<td>56</td>
<td>76</td>
</tr>
<tr>
<td>LANDSAT</td>
<td>9,828</td>
<td>139,670</td>
<td>147</td>
<td>1,021</td>
<td>993</td>
</tr>
<tr>
<td>MODIS</td>
<td>9,434</td>
<td>98,128</td>
<td>144</td>
<td>1,533</td>
<td>1,561</td>
</tr>
</tbody>
</table>

Web of Science（収録対象1993年以降） 2015年5月15日調べ。
h指数(h-index)：トピックや著者等の論文の被引用に関する指標。少なくともx回以上引用された論文がx本。
IPCC第5次評価報告書における主な引用

(1)降水量の根拠データ
左図IPCC第五次評価報告書(IPCC AR5)では、数値気候モデルを使って将来の気候変動を予測している。そのようなモデルの検証にTRMMによる降水量観測データが使用され、予測精度の向上に寄与。

(2)北半球海氷面積縮小の根拠データ
長期（〜9.5年）かつ高分解能のマイクロ波データを提供したことで、AMSR-Eと他のマイクロ波放射計データによる北半球海氷面積変化の監視結果により、IPCC第5次評価報告書（第1作業部会報告書）において、海氷面積が縮小していることが明らかにされた。

(3)メタン濃度増加の根拠データ
メタン濃度の観測結果として、地上での観測点に加え、宇宙からのリモセンとして、AIRS, TES, IASI, SCIAMACHYとGOSATのTANSO-FTSが引用され、リモセンデータの有効性が示された。
6.4 各種プロダクト提供状況

6.4.4 FTS SWIR L2 XCO₂ プロダクトの注文量（スキャン数）
（国環研内部からのアクセスを除く）

V00.xxの一般ユーザーへの公開開始
V01.xxの一般ユーザーへの公開開始
V02.xxの一般ユーザーへの公開開始
ボトムアップの議論形成

■ 日本学術会議地球惑星科学委員会 地球観測の将来構想に関する検討小委員会
■ 地球惑星科学連合 大気・水圏科学セクションにおける衛星地球観測セッション
■ 地球観測タスクフォース会合・リモートセンシング分科会（TF、学会連合）
 - 2015/9: 我が国の地球観測の将来計画に関する提言
 • 提言 1 我が国の優れた技術の展開（科学技術）
 • 提言 2 複数衛星の有機的な運用（科学技術）
 • 提言 3 効率化（科学技術）
 • 提言 4 将来取り組むべき新しい技術の開発（科学技術）
 • 提言 5 衛星観測データ利用促進と新産業創出のための高度なデータ解析力の強化（科学技術）
 • 提言 6 予算計画について（科学技術）
 • 提言 7 社会が求めるアウトカムの明確化（実利用）
 • 提言 8 実利用の近未来像の具体化（実利用）
 • 提言 9 日本の得意なリソースを活かした実利用展開（実利用）
 • 提言 10 実利用展開に向けた具体的な方策（実利用）
■ 世界の工程表の分析：世界の衛星計画の中での我が国の貢献
結論

・ 我が国では、ADEOS，ADEOS-II時代の暗黒時代から回復し、地球観測衛星はチェックアウト後、役立つ成果物を迅速に作り出している。
・ 様々な応用が掘り起こされている。宇宙機関・現業機関・研究機関・学問間で、様々な連携が生まれている。
・ h-indexは高い。地球観測衛星は最先端科学と応用の両方に役立つように工夫されている。二者択一では無い。
・ 欧米・中国・韓国では、地球環境問題解決への貢献のために、旺盛な地球観測衛星開発を独自に行っている。「2020年から2040年」期の議論が盛んである。
・ 宇宙基本計画の工程表では、「その他のリモセン衛星」カテゴリーにおいて、2020年期から空白時代ができる検討開始が記入された。
・ 宇宙政策委員会には、地球環境問題・観測に関する部会/小部会が無い。
・ 学術会議や学会連合によるボトムアップの衛星計画提案が始まった。
・ 持続可能な観測システム構築への努力が必要である。衛星長寿命化（10年以上）・小型化などの革新が必要である。