

Methane and other trace gases: NIWA measurements

Keith Lassey

on behalf of: Tony Bromley, Ross Martin, Gordon Brailsford, Rowena Moss, Kim Currie, Bill Allan, Dave Lowe

NIWA, Wellington, New Zealand. (k.lassey@niwa.co.nz)

Asia-Pacific Workshop on Carbon-Cycle Observations NIES, Tsukuba, Japan, 17–19 March 2008

Trace gas sampling programme

- Baseline levels of trace gases at Baring Head, Wellington:
 - CO₂ (since 1972), CH₄ (since 1989), CO (since 1989), N₂O (since 1996), O₂/N₂ (since 1999)
 - ¹³C, ¹⁴C in above, and ¹⁸O in some of above
- Baseline levels of some gases/isotopes at Scott Base, Antarctica
- Trace gases/isotopes in shipboard air samples (NZ to Japan), since May 2004
- pCO₂, etc, in sub-Antarctic surface water

Baring Head CO₂

- monitoring commenced in Dec 1972 in cooperation with C.D. Keeling, Scripps
- measured continuously in situ by NDIR
- longest-running continuous station in SH, next longest in world after Mauna Loa
- inter-calibrated with Scripps & NOAA
- complemented in 1998 by δ^{13} C measurements (continuous flow: D. F. Ferretti)
- complemented in 1999 by O₂ measurements
 (paramagnetic analyser: A. C. Manning)

Baring Head & Mauna Loa CO₂

Baring Head CO₂

- Dataset largely under-utilised in global carbon-cycle studies
- Data (not just CO₂) submitted to World Data
 Centre for Greenhouse Gases (Tokyo)
- Reported strongly in IPCC 4th Assessment
 Report (Dave Lowe, Lead Author, Chapter 2)
- Data used in recent study of the Southern
 Ocean as a CO₂ sink [Le Quéré et al., 2007]

Baring Head ¹⁴CO₂

Baring Head $\Delta^{14}CO_2$

- Visionary commencement of measurements, pre-dating the "bomb-14C pulse"
- Near-unique and valuable dataset:
 - long-term evolution of $\Delta^{14}CO_2$ critical to carbondating calibration [eg, Hua & Barbetti, 2004]
 - response of C reservoirs to bomb-¹⁴C injection pivotal to understanding C-cycling [eg, Lassey et al., 1996; Peacock, 2004]

- Hua, Q.; Barbetti, M. (2004). Radiocarbon 46: 1273–1298.
- Lassey, K.R. et al. (1996). *Tellus 48B*: 487–501.
- Peacock, S. (2004). GBC 18: GB2022,

pCO₂ time series along a sub-Antarctic surface transect

May SSTs

Attribution: Work of Kim Currie et al.

pCO₂ time series along a sub-Antarctic surface transect

'Munida' time series since 1998, led by Kim Currie

Measurements of:

- temperature
- salinity
- pCO2
- pH
- alkalinity
- etc

bi-monthly since 1998

RV Polaris (Munida replacement)

SASW Seasonal Cycles

$$T = 10.3 + 2.1\sin\left(2\pi \frac{t - 317}{365}\right)$$

$$pCO_2 = 355 + 10\sin\left(2\pi \frac{t - 156}{365}\right)$$

$$pH = 7.869 + 0.05 \sin\left(2\pi \frac{t - 162}{365}\right)$$

$$NO_3 = 12.2 + 1.9 \sin\left(2\pi \frac{t - 138}{365}\right)$$

SASW Air-Sea flux of CO₂

Baring Head CH_4 and $\delta^{13}C(CH_4)$

- monitoring of δ^{13} C(CH₄) commenced in 1987; [CH₄] commenced in 1989
- [CH₄] measured by GC/FID, δ^{13} C(CH₄) by IRMS, on grab samples
- inter-calibrated with recognised standards
- [CH₄] complements NOAA record; δ^{13} C(CH₄) arguably the best record globally

Baring Head CH₄

Baring Head δ^{13} C(CH₄)

An important chlorine sink for CH₄?

- Upper plot:
 - composite seasonality of [CH₄]
- Centre plot
 - composite seasonality of δ¹³CH₄
- Lower plot:
 - [CH₄] vs δ¹³CH₄: "phase ellipse"
 - Slope of ellipse axis determined by isotope fractionation in sink
 - Dash-dot line corresponds to 'accepted' fractionation of 5.4‰
 - Actual slope ⇒ fraction'n ~13‰
- Allan, W. et al. (2001). GBC 15: 467-481.
- Allan, W. et al. (2007). *JGR 112*: D04306.

Source: Allan et al. (2001)

An important chlorine sink for CH₄?

- Why is sink fractionation as high as ~13‰? (OH sink has fractionation ~5.4‰ or less)
- Likely answer: role by active
 CI (fractionation ~60‰)
- Allan et al. (2007) argue that a CI sink that removes 13–37
 TgCH₄/yr globally can account for observations
- Cl sink absent from current global budgets
- Allan, W. et al. (2001). GBC 15: 467-481.
- Allan, W. et al. (2007). *JGR 112*: D04306.

Source: Allan et al. (2001)

Ship voyages, Nelson (NZ) to Osaka

Shipboard measurements

- transect: 41.3°S, 174.3°E to 34.7°N, 135.5°E
- 8 voyages on two bulk-carrier vessels*, May
 2004 to May 2007
- collect dried air samples every 2.5° between latitudes –20° to +20°, every 5° elsewhere
- record meteorology at time of sampling
- analyse samples in NIWA laboratory for:
 - CH₄, ¹³CH₄, CO, ¹³CO, ¹⁴CO, C¹⁸O
- measure real-time CN densities
- 24-hr particulate aerosols (hi-vol filtration)
 - * Vessels *Fujitrans World* then *Transfuture 5*, Toyofuji Shipping Company Ltd, Nagoya

Shipboard CO

- Inter-comparisons of CO:
 - 3 voyages, Dec early Jan
 - 4 voyages in May (but CO unavailable for May 2007)
- approx. NH seasonality:
 - peak ~150ppb in Mar
 - trough ~90 ppb in Aug
- approx. SH seasonality:
 - peak ~60ppb in Sep
 - trough ~40 ppb in Feb
- Note inter-annual variability north of ~10°S

Shipboard CH_4 and $\delta^{13}C(CH_4)$

Why the NZ focus on CH₄?

The NZ GHG emission inventory (shown for 2004):

- approx 50% CO₂, 50% agricultural GHGs
 highest ag. component of all developed countries
- 2/3 of ag. GHGs are CH₄ from ruminant livestock
- ruminant CH₄ has no known abatement prospects

Acknowledgements

- NIWA colleagues, both past and present, for their foresight and skill
- Logistical and technical support from NIES (Prof. Yukihiro Nojiri et al.)
- Opportunities, facilities and hospitality aboard vessels of Toyofuji Shipping Company Ltd
- Funding: NZ Foundation for Research,
 Science & Technology
- Co-funding: NOAA GCOS programme

